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Abstract

Intelligent spaces [1, 2] are rooms or areas that are
equipped with sensors such as microphones or cameras
that enable them to perceive what is happening in them.
In such spaces that have an intelligence of their own
a world model no longer is something the robot has
alone but a service offered by the information infras-
tructure of the space. In this article we show how such
an intelligent space can generate a topological map for
robots by looking at the movements of people in the
room. We describe the stereo vision system that is ca-
pable of tracking the 3D movements of several humans
in real time and give experimental results obtained in
o real-world environment with several people.

1 Introduction

Autonomous robotic systems such as service robots
need maps in order to complete their tasks. This is
partially due to the fact that navigation in completely
unknown environments is still an unsolved problem.
Even if this was possible maps would be needed to
specify the robots task or constraints in its path. As
robust collision avoidance in moderately difficult en-
vironments has been achieved in the last years these
maps do not have to provide the complete geometrical
information but often an approximate geometrical or
topological representation is sufficient (e.g. the PRI-
AMOS system [3]).

The maps the robot uses are usually created by a
human operator and contain a static representation of
possible paths the robot can take. This is cumbersome
as it requires constant updating to a changing envi-
ronment. Some advanced mobile systems can explore
their environment and build such maps by themselves.
This method has the problem that most sensors will
not detect all possible types of obstacles. Some obsta-
cles as yellow lines on the floor or signs saying “don’t
enter” can not be detected at all without large amounts
of contextual knowledge.

The approach we suggest to solve this problem is
looking at people. In indoor environments people and

robots consider similar things as obstacles. The only
common exception here are steps and stairs. As our
environment is build be safe for people the robot can
usually rely upon them to make few mistakes.

Vision systems for looking at people have made sig-
nificant advances in the last years and can now be
built with industry standard hardware [4]. This de-
velopment has equally been driven by new technology,
new approaches to finding humans and a large number
of applications ranging from intelligent man-machine
interfaces over tele-conferencing to security.

Recently a new paradigm of seeing such systems has
evolved. They are no longer seen as an isolated vision
system but as a sensor component of the intelligent in-
frastructure of the space they look at. Such intelligent
spaces are able to watch what is happening in them,
build a model of themselves, communicate with their
inhabitants and act based on decisions they make. Ex-
amples for such spaces are the Intelligent Room [2] or
the Smart Space [1]. With networking capability be-
ing built into many common appliances and prices for
sensor hardware dropping rapidly this vision seems in-
deed not too distant.

Our research is particularly interested in how these
intelligent spaces can cooperate with robots that move
in them. One interesting application here is how the
room can serve as a high level, context sensitive in-
terface to robots. The second research area is on
how the room and the robot can share information
on the geometry and semantics of the space. Classi-
cally a robot has a representation of its environment
in a world model he uses alone. In an intelligent space
the world model becomes a service that is offered by
the environment, in which the robot participates and
eventually contributes to.

In this paper we first give an introduction to the In-
telligent Space project at the University of Tokyo. The
main focus however is on how the system can derive
3D geometrical information by using the vision system
of the intelligent space. We first describe the architec-
ture of the vision system in section 3, illustrate how
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Figure 1: The Architecture of the Intelligent Space

a topological path can be derived in section 4, show
experimental results of the system in section 5 and
conclude with a perspective on ongoing research.

2 The Intelligent Space

An Intelligent Space is an area such as a room, a corri-
dor or a street that is equipped with sensors and actu-
ators. The sensors have the main purpose to perceive
what is happening in the space, especially what hu-
mans inhabiting it are doing. They include active and
passive cameras, microphones, microphone arrays and
tactile sensors. Actuators are currently mainly used to
provide information to the inhabitants. This is done
with speakers, screens, pointing devices, switches or
robots inside the room.

The soft- and hardware architecture of the intelli-
gent space must posses a number of properties:

Modular. As often components will be added or re-
moved from the intelligent space it has to be
modular and should be reconfigurable during run-
time.

Scalable. The architecture should be valid not only
for a single room but should allow integration of
local spaces into larger systems.

Integration It should be simple to integrate existing
intelligent components or services into the room.

Low Cost. As many intelligent components are
needed the cost of a single component should be
low. This requires the use of industry standard
hardware.

Easy Configuration and Maintenance. Setting
up and maintaining an intelligent space should

be possible with minimal effort. The space must
be able to learn about itself (e.g. model building,
auto-calibration) and site specific adaptation has
to be done easily.

The modularity dictates that the components of the
intelligent space have to be connected by a network.
As the volume of the data generated by some of its
sensors (e.g. cameras) is too high for todays network
architectures it is clear that data preprocessing has to
be done locally.

On the software side we have three different types
of tasks with different characteristics. They are dis-
tributed as individual processes over the computers of
the network.

Sensor and Actuator Servers. For the data pre-
processing highly specialized modules are needed
that derive relevant information from the sensors
and offer this information on the network.

Intermediate Processing. On an intermediate
level processes collect data from one or several
sensor servers to which they connect as clients.
Typical tasks are sensor fusion, temporal inte-
gration and model building. As sometimes this
requires some real-time capability they should
be located close to the sensor computers. The
intermediate results are again offered on the
network.

Application Processes. These processes perform
the actual applications of the space. As they usu-
ally require low volumes of data and slower re-
action times optimization is less critical. They
should however be easily portable across architec-
tures and eagsily maintainable by the user.

Similar architectures have already been used for the
control of other types of intelligent systems such as
mobile robots (e.g. [5])-

Our intelligent space is integrated into the labora-
tories computer network. Its processes run on PCs,
SGI and Sun workstations running different types of
UNIX/Linux. The Robot participates in the network
by wireless LAN.

While for the sensor servers and intermediate pro-
cesses, system specific compiler languages are used
the application processes use interpreted Tcl/Tk [6].
This allows extremely fast application development
and easy creation of user interfaces. It additionally
is used for rapid prototyping of lower level processes.

Unlike previous projects our intelligent space it is
not a special room but a real laboratory that is con-
stantly used by students and researchers working in
it. This requires a high degree of robustness for the
components of the intelligent space.



Figure 2: Different stages of the detection process. (a) sample camera image (b) potential skin color pixels (c)
foreground pixels (d) foreground skin color pixels (e) cluster bounding boxes (f) centroids and first moments of

clusters.

3 The Vision System

To build a map the intelligent space tracks the move-
ments of humans. For this purpose the vision system
is the only sensor that is used. Recognizing the hu-
man is done in two steps. First the area or shape of
a human is separated from the background. Second
features of the human as head, hands, feet, eyes etc.
are located. Taking the images of several cameras we
can then calculate the 3D position of the human.

3.1 Separating the Human Shape

To separate the shape of a human from the background
the two most frequently used approaches are back-
ground separation or motion detection by optical flow.
It has been suggested to find humans directly using
color information alone [7] however this only works
robustly in front of simple backgrounds. Finding hu-
mans by detecting motion of edges [8] has been sug-
gested however it seems less robust for obtaining the
complete shape.

Background separation. Object moving in front
of a static background viewed with a static camera
can be identified using background separation. If we
define background B and image I at the time ¢ as RGB
trippels:

B = (B.B.B) @
I = (LI @)

the all pixels of the Image I for which

It('ray) ‘—lé BO(way) (3)

are foreground. This technique however faces sev-
eral difficulties. First the image values I(z,y) tend
to be noisy. This noise can differ significantly for dif-
ferent regions of the image e.g. zero for saturated ar-
eas and high for the region that contains a television
screen. This can be solved by using an experimen-
tally obtained local noise model o. The criterion for
foreground is:

I'(z,y) — B (2,y) > o(z,y) (4)

A second common problem are shadows. There de-

tection can be avoided if additional color information

is used. For an intensity normalized representation
such as:
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the color of a lambertian surface is invariant under
varying intensity of a single light source. In this model
shadows will not appear. In images taken of real ob-
jects using a ccd camera and frame grabber this is
usually only an approximation. Deviations are due
to factors such as different light sources, saturation,
specular reflections, nonlinearities introduced by the
camera and frame grabber etc. For our application
however this model has proven to be sufficient.

No background will remain static over a long period
of time. Changes in lightning, moved objects and the




camera signals will alter the image slightly. Here a
continuously updated background model is needed:

Bir1=A-Bi+ (1= NI (5)

We obtain as criterion for background separation:

1= BY+|I - B+~ Bl >0 (6)

Motion and Optical Flow. Optical flow is an-
other commonly used technique to separate moving
objects from the background however most of its im-
plementations are too slow for real-time implementa-
tion on standard hardware. Often simple image differ-
encing is used instead. It selects all pixels for which:

I'-rrtsg (7)

This method has the problem that it will include
all pixels of the background which are covered in the
last frame. This is acceptable if the objects movement
between two frames is small compared to its size. If
the objects movement is faster secondary differencing
has successfully be used in the Intelligent Room [9]:

I'—1''>¢ AND I""'—T""2>¢ (8)

This too fails however if several objects with over-
lapping trajectories move (e.g. hands and arms). Im-
age differencing equally has a problem with shadows
that can equally be solved by using color. Background
separation and simple image differencing can both be
characterized by equation 6 with 1 > A > 0 for adap-
tive background separation and A = 0 for image dif-
ferencing.

3.2 Finding Head and Hands

To calculate 3D from several camera views point corre-
spondences are needed. To establish these correspon-
dences directly from the shape of the human is diffi-
cult. Instead we first find the head and hands of the
human and use their centers for matching. A second
motivation to further analyze the shape is that adap-
tive background separation in complex scenes detects
recently displaced objects.

Too identify parts of the human body feature detec-
tors that find these parts directly can be constructed.
For finding faces neural nets [10, 11] have been used. A
different approach uses edges in gradient images [12].
For high resolution face images recognition can be fur-
ther enhanced by using active contour models [13].
Templates or sets of templates can equally be used for
finding faces however robust person independent loca-
tion under changing conditions seems difficult. The
contour shape of a human has frequently been used
to identify body parts [14, 15, 16]. It only works well
however for parts which are stretched out.

Another common technique is to use color informa-
tion. By segmenting the shape into colored regions [17]
or looking for skin colored regions directly [7] hands
and head can be identified. As we only try to find
head and hands the second approach is sufficient for
our system.

In an luminance normalized color space skin color is
remarkably constant over a wide range of ethnic ori-
gins and illuminations. Again as an approximation the
transformation from equation 6 can be used. As in this
equation (r + g +b) = 1 only two components have to
be considered. The criterion for skin pixels is thus:

. 0 Skin Pixel
Hist(r, g) ={ 1 Other (9)

Problems arise however when skin color is too dark
to contain substantial color information.

An interesting and more complex skin color detec-
tion scheme using probability histogram instead of a
binary histogram has be develloped by Schiele et al.
[7].

3.3 Calibration and Reconstruction

To obtain 3D coordinates from the color regions we
have identified three steps are necessary. We have to
obtain the geometric parameters of the cameras (cal-
ibration), we have to establish point correspondences
between the two images (matching) and finally have to
find an approximate 3D position to the corresponding
points (reconstruction).

Calibration. The geometric model used for the
camera system as well as the algorithm for calibrating
it are those of Tsai [18]. It is attractive as it offers a
fast, high precision solution that is able to cope with
lens distortion as it is encountered when using wide
angle lenses. Additionally the highly portable imple-
mentation of Willson [19] is publicly available in source
code. Calibration is done using a grid of circular tar-
gets at known positions on the floor. The center of
the targets is calculated with sub-pixel accuracy. For
each camera of the system the calibration matrix is
stored and can be accessed by the corresponding cam-
era server. A very interesting development in the field
is the self calibrating vision system recently presented
by Azarbayejani et al [14].

Clustering and Matching. Before being able to
calculate the 3D position of a point we need a corre-
spondence of to point in the two images. This faces us
with two problems.

First we have to reduce the skin color regions to
a single point. The first step to do this is to clus-
ter potential skin pixels to clusters. For this a simple
but fast self-developed one pass clustering algorithm is
used. For each line cluster hypotheses are generated.
Possible clusters that do not have a certain amount of
continuety over several lines are discarded. In a final



step overlapping clusters are merged. For the point
correspondences we could now use the centers of the
bounding boxes of these clusters however this methods
is highly susceptible to noise. We instead calculate the
center of gravity (Z,¢) of all the pixels p; of the cluster
as:

1 & 1 &
r = — : y = — : 1
x Nziz1 ooy Nzl,:1 Yi (10)

Second we have to find out which clusters in one
image corresponds to which cluster in the other im-
age. One criterion is the size of the clusters. Again
the size of the bounding box is a highly susceptible to
noise. A more robust measure is the matrix of the first
moments:
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For the matching four indicators are used.

Cluster Size. We compare the standard deviation of
the clusters 04, and oy,.

Cluster Orientation. From the matrix of the first
moments we equally know the inclination of the
clusters. Only inclinations with a meaningful 3D
position are considered.

Epipolar Constraint. For two cameras with known
geometry the two dimensional search for corre-
spondences can be reduced to a single dimension
along a line in th other image, the epipolar line
(see e.g. [20]). The distance from this line corre-
sponds to an error probability.

Model Constraints. After 3D reconstruction of the
position we confirm that the position is meaning-
ful. Positions above the ceiling, under the floor or
outside the room are discarded.

Reconstruction. Once two matching 2D positions
are obtained the 3D reconstruction done by finding
the least square solution for the projective geometric
equations (e.g. see [20]). As a fast implementation is
required the optimized LAPACK libraries are used.

A more general approach to using first moments to
describe 3D color distributions from which some of the
above ideas were borrowed is used for the system de-
scribed in [14].

A modeling stage that uses a model of humans to
further enhance the robustness of the tracking has re-
cently been developed however it is not used for the
experiments in this article.
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Figure 3: The architecture of the vision system.

3.4 Architecture

The above algorithms are implemented in three differ-
ent modules of the intelligent space as shown in figure
3.

Camera Server. This module connects directly
the the frame grabber. It performs the shape sepa-
ration, skin color detection, clustering, and moment
calculation. The result is a 6 parameter description (
Z, ¥, Ogg, Oyy, Ozy, color ) of each cluster. An unlim-
ited number of clients can connect to each server.

3D Reconstruction Module. For each pair of
cameras of the space a 3D reconstruction module can
be started. It connects to the two camera servers,
loads its calibration data and offers a stream of re-
constructed 3D color clusters on the network. As
we want to be able to add and remove cameras by
simply adding them to the network we can not use
synchronized cameras. This leads to a deviation of
the reconstructed 3D position for fast moving objects.
We counter this problem by rejecting cluster data for
which the time difference between the two sources is
larger than 50ms. The resulting error in this case is
small [4].

Calibration Client. The calibration module is an
application module that is interactively launched by
an operator. It uses a graphical interface to specify
the points of the grid and their coordinates.

3.5 Optimization Issues

In order to make the above system run on standard
personal computer hardware a number of optimization



issues are important.

First it is important to understand that the main
constraint of the system is not calculation time but the
amount of data that can be transfered to the processor.
As skin color detection can be done with less memory
transfer than background separation it is done first.

Before the histogram lookup for skin color detec-
tion can be performed the colors have to be normal-
ized as equation 6. The calculation steps to do this
however are time consuming. A second possibility is
to transfer the histogram from the normalized (r, g)
to the unnormalized (R,G, B) representation. Now
the color components can directly be used for lookup.
The problem now is that the histogram becomes big
(256% = 16 Million entries). The solution is to use a
15 bit representation with 5 bit of color information
for each channel:

I(z,y) = 0ORRRRRGGGGGBBBBB,

This reduces the histogram size to 32 kByte which
fits into the second level cache of the processor. As
the frame grabber can directly generate this format
the whole skin color decision process is reduced to a
single binary memory lookup operation.

The skin color detection, background separation and
clustering of the images are all calculated in a single
pass over the image. An additional pass for the mo-
ment calculation is only needed for skin color areas.

The hardware of the system are PCI-Bus PCs using
Matrox Meteor PCI frame grabbers and Chinon CCD
cameras. As the most critical part of the system is
the PCI-DMA transfer selection of a high performance
chip-set is crucial. Overall cost of the system is less
then U.S. $ 2000 per camera.

4 Generating Topological Maps

The topological map generation is done by a seperate
process that connects to the human tracking module.
First we have to determine if the human that is ob-
served is walking or doing something else. Second we
have to transfor the human positions into a topological
map that is usefull for the robot.

4.1 Identifying walking areas

To determine which areas people walk in we generally
need to determine what people are doing when they
where seen. People sitting on chairs, leaning over ta-
bles or having their hands on tables while working all
generate 3D skin color blobs which have to be filtered
out. A number of clues can be used to identify a per-
sons walking path e.g. height of the head, speed of
movement, relative position of head and hands. For
our application it has proven sufficient to assume that
if a person is standing upright its head is above its
walking area. People standing upright can be filtered

out by simple height thresholding. Hands can be fil-
tered out by removing all blobs that are too small for
faces.

4.2 Extracting a Topological Path

Next the positions are filtered for outliers which are
usually due to incorrectly matched blobs. Then the
positions are dilated with a morphological operator to
obtain a connected walking area.

The next step is finding a path inside this walking
area. As the positions of humans will be noisy due to
the reconstruction error and mismatches, we need an
algorithm that is robust against this type of noise. As
speed is a less important issue we are looking for a safe
rather than the shortest path.

In [21] it has been pointed out that the safest path
in terms of having the biggest distance to obstacles can
be found by using the skeleton of the passable area. As
a method of skeletonizing, we used Zhang-Suen’s skele-
ton algorithm [22], which is frequently used in image
processing. It is a iterative procedure of decompos-
ing cells by considering relations to other cells. This
algortihm has several important properties that are
necessary for our task:

e It never cuts connected areas. This is necessary to
ensure that the topological path reflects all possi-
ble ways the robot can move to a point.

e The result of skeleton process is always placed
on the center of the object. This guarantees us
maximum safety and makes the algorithm robust
against evenly distributed noise.

e One iterative process decomposes only one layer
of object cells around a contour. By this way it
is possible to generate skeletons of variable thick-
ness. This is interesting for robots that have a
size that is significantly bigger than the size of
humans.

While the algorithm can generate skeletons of arbi-
trary thickness we currently use it to generate a skele-
ton of minimal thickness which is then transformed
into a graph with nodes for each fork of the skele-
ton. Approximate geometrical path information for
each connection is stored. The robot can then navi-
gate its environment by driving to a close node using
collision avoidance, use the topological map to get to
a node close to is destination and navigate there with
collision avoidance as detailed in [5].

5 Experimental Results
5.1 The Vision System

Experimental evaluation of the system at the output
level of the 3D reconstruction shows a speed of 20



Frames/s with an image resolution of 640x480. An
example standard deviation for heads at a distance
of 10 meters from the camera plane is about 3.5 cen-
timeters in the camera plane and 7.5 cm orthogonal to
it. Fast movements of a human (e.g. running, waving
quickly) slightly increases the error. See [4] for more
experimental results.

5.2 Building Maps

The experiments where performed in the intelligent
laboratory room whose ground plan is shown in 4. Po-
sitions A-C denote places where people sat and worked
during the experiment. Position D and E contain a
large and small obstacle that are not in the world
model. F is a large box on the floor that is part of
the world model.

table
table

table
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table
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Figure 4: Ground plan of the Intelligent Space

Figure 5: Example scene during the tracking. The
head to the very left was not found at it had not moved
over a longer period of time, the left arm because it is
fragmented and too dark and thus contains too little
color information.

The room watched the movements of the people in
it for about one hour. During all of the time 2-4 people
where in the room working, talking to each other or
walking around. Figure 5 shows an example scene.

Positions of moving persons were obtained with
about 20 Hz. Only positions with a vertical height be-
tween 1.65 and 2.00 meters and only blobs with at least
0.6 times the size of a head were taken into account.
Due to these parameter settings about two thirds of

the correct head positions were discarded but wrong
matches, hand positions etc. were filtered out with a
high accuracy.

Figure 6: Different stages of the map building algo-
rithm. (a) initial position of found skin blobs (b) fil-
tered positions (c) dilated walkable area map (d) safest
path through map.

In figure 6a-d the different stages of the algorithm
can be seen. Filtering out all suspected non-head po-
sitions reduces some hand blobs everywhere but the
strongest effect is visible in areas where people worked.
Here positions were filtered out as head and hands are
much lower than that of walking people. The last stop
shows the topological map of the room. The topologi-
cal map correctly avoids all static obstacles as well as
the dynamic ones at position D and E that where not
in the world model. The small error in the left of the
image is probably due to tall people leaning over the
table.

6 Conclusion and Outlook

We have presented a system that is capable of learn-
ing topological paths for robots from the movements
of people in the room that works robustly in a com-



plex, cluttered real world environment with multiple
people. In a usual laboratory environment the system
can generate a new topological map within one hour.
We consider the system as a special case of cooperation
between intelligent robots and intelligent rooms.

Currently research is under way to additionally use
the room as enhanced user interface to the robots. Us-
ing the camera system the room will be capable to re-
solve spatial references in human speech. Commands
as “drive there” become possible.

A more general question is what a room can learn
from looking at its contents. Fusing the data gained
by tracking humans and that of object recognition the
room should not only be able to gain a better geomet-
ric model but annotate it with semantic information
such as classifying areas according to their use, under-
standing tasks humans perform etc. Here the learning
of tasks from looking at the actions of humans could
be particularly interesting.
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